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Abstract Two examples of developments in Statistical Mechanics, on whose success the
experts agreed, are discussed. First and foremost, a systematic generalization of the Boltz-
mann equation for a dilute gas from binary to higher order particle collisions, expected to
lead to a density expansion of the transport coefficients. This would imitate, in nonequi-
librium, the density expansion of the thermodynamic quantities in equilibrium. However,
by studying concrete models, it became clear that because of the neglect of collective col-
lision effects, not relevant in equilibrium, the purely formal expressions for the transport
coefficients obtained this way exhibited divergences. Secondly, a related purely mechani-
cal problem, concerned the question of the maximum number of collisions between three
identical hard balls in infinite space. The answer, on intuitively convincing grounds, was
generally accepted to be three, as in one dimension. Also this was incorrect, as a computer
simulation first showed.

The message here is: beware for common opinions and purely formal or intuitive argu-
ments: test them on concrete models first.

Keywords Divergences · Density expansions · Transport coefficients · Nonequilibrium
gas · Maximum collision number · Three hard balls

1 Introduction

After World War II there was a widespread interest in Statistical Mechanics to generalize
the Boltzmann Equation for a dilute gas, which takes into account only binary collisions,
systematically to higher density gases. This would imply taking into account higher order

This paper is neither a survey nor a historical paper, but a re-collection and interpretation of the author
of what happened in what someone called “The Bronze Age of Statistical Mechanics (1956)” (D.
Levermore).
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i.e. 3-particle, 4-particle etc. collisions. There was general agreement that such generaliza-
tion should be possible and would then lead to density (or virial) expansions of the transport
coefficients, in close analogy with the corresponding density expansions for the thermody-
namic properties of a moderately dense gas in thermal equilibrium.

I. Prigogine organized in 1956 a large meeting to that effect in Bruxelles, which was
partially devoted to this question. Almost all leaders in Statistical Mechanics at the time were
present, such as J.G. Kirkwood, J.E. Mayer, M.G. Mayer, E.W Montroll, G.E. Uhlenbeck,
L. Van Hove and J. Yvon, apart from Prigogine, and many other—especially very active
younger participants—such as M.S. Green, J.L. Lebowitz and J. Ross [1].

In particular it was discussed, which of the many different existing derivations of a gen-
eralized Boltzmann Equation, was the correct one. There appeared to be no doubt, however,
that such a generalization and the ensuing virial expansion of the transport coefficients could
be realized.

After two hours of intense discussions of the various proposed derivations of a general-
ized Boltzmann Equation, D.K.C. MacDonald asked the question: “Could somebody tell me
what the Boltzmann Equation precisely is?”. To this, G.E. Uhlenbeck described calmly and
very briefly, for a somewhat stunned audience, the answer given here:

“The Boltzmann Equation of 1872 is:

∂f

∂t
= −v · ∂f

∂r
+ J2(ff )”. (1)

Here f = f (r,v, t) is the average number of gas particles around the position r , with ve-
locity v at time t , in a unit volume element in a 6 dimensional phase-space (μ-space or
r,v-space) drdv ≡ dxdydzdvxdvydvz, centered around r,v. The lhs (left-hand side) of (1)
gives the rate of change of f as the sum of the two terms on the rhs (right-hand side) of (1).

The first term on the rhs of (1), the streaming term, gives the change, per unit time, in the
average number of particles with velocity v in a unit volume element dr dv.

The second term gives the average number, per unit volume and time, of binary, i.e. two
particle, collisions in the dilute gas, based on a statistical assumption and on the (collision)
dynamics of two particles alone in infinite space, as indicated by the subscript 2 on the
J2, which involves the product of two f -functions, referring to the two colliding particles,
respectively.

Before discussing the generalization of the Boltzmann Equation, I will first remind the
reader of the “exemplary” density expansion of the thermodynamic properties (e.g. the pres-
sure) of a moderately dense gas in equilibrium.

The “self-evidence” of the existence of a density expansion was based on the intuitively
“obvious” observation that the probability for two-, three-, four-, etc. particle collisions in a
unit volume would, “of course”, be proportional to corresponding increasing powers of the
density i.e. n2, n3, n4 etc., respectively, of the gas.1

This was first achieved by J.E. Mayer in 1937 [2] and reads for the pressure p(n,T ) of a
gas in equilibrium:

p(n,T ) = kBT [n + B(T )n2 + C(T )n3 + D(T )n4 + · · · ], (2)

where n is the number density and T the absolute temperature of the gas, while kB is Boltz-
mann’s constant. In this virial (density) expansion of the pressure, the first term on the rhs

1If the gas consists of N -particles and is contained in a volume V , then the (number) density of the gas
n = N/V .
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∼ n is the single particle or ideal gas contribution, the second term ∼ n2 the contribution
of two particles with prefactor B(T ), the second virial coefficient, the third term ∼ n3, the
three particle contribution with prefactor the third virial coefficient C(T ) and the fourth term
∼ n4, with prefactor the fourth virial coefficient D(T ), etc.

The structure of these and all other (higher) virial coefficients is such, that they consist
of isolated clusters of an increasing number of particles, which are so constructed, that they
are only different from zero, if they have the cluster property, i.e. all particles in a cluster
must interact with each other and if not, then those contributions to the corresponding virial
coefficients vanish.

In this paper I assume additivity of the intermolecular forces and a spherically symmetric
intermolecular potential field between two particles 1 and 2, ϕ(r12), i.e. only dependent on
their distance r12, with a sufficiently short range. Then the second virial coefficient reads:

B(T ) = −2πN

∫ ∞

0
[exp−(ϕ(r12))/kBT − 1]r2

12dr12. (3)

Thus, the integrand on the rhs of (3) vanishes, if there is no interaction between the two
particles 1 and 2, i.e. when ϕ(r12) = 0. B(T ) gives therefore an extra contribution to p,
not contained in the previous (ideal gas) term. Similarly all the higher virial coefficients
C(T ) etc. vanish, unless the particles they contain interact at least once with each other and
then give, similar to B(T ), extra contributions to p(n,T ) not present in the previous virial
coefficients.

If the potential ϕ(r12) is, e.g., a 12-6 Lennard-Jones potential,2 the integrand in (3) will
vanish sufficiently fast for r12 → ∞ for the B(T ) to exist. The same property obtains for
all higher virial coefficients. The finiteness of all the virial coefficients has allowed Ruelle
to prove that the virial expansion is a convergent expansion for sufficiently small gas densi-
ties n [6].

It is worthwhile to remark that the existence of a virial expansion for a gas in equilibrium
is in a way a “miracle”, since it allows a property of the entire N -particle gas (p(n,T )) to
be systematically expressed in terms of an increasing number of small 1, 2, 3, etc. isolated
particle clusters. In other words: the daunting N -particle dynamical many body problem has
been reduced to static 2, 3, etc. few body (particle) problems.

As said, the general expectation in the Statistical Mechanical community was for a “long”
time, that the same had to be true for a gas in a non-equilibrium state.

2 Bogolubov’s Generalized Boltzmann Equation

Although many different approaches to obtain such a generalized Boltzmann Equation were
attempted, the one originally proposed by N.N. Bogolubov in 1946 appeared to be the most
promising, since it mimicked, on the level of μ-space or r,v-space, the structure of the virial
expansion (2) in ordinary space:3

∂f

∂t
= −v · ∂f

∂r
+ J2(ff ) + J3(fff ) + J4(ffff ) + · · · , (4)

2The 12-6 Lennard-Jones potential as written in the standard form by de Boer and Michels [3–5] is: ϕ(r) =
4ε[(σ/r)12 −(σ/r)6], where ε is the depth of the potential at its minimum and σ its “diameter”, i.e. ϕ(σ) = 0.
3The index n in Jn indicates the number of particles involved in Jn and should not be confused with the
average particle number density n (cf footnote 2).
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as was particularly emphasized by G.E. Uhlenbeck [7], where the index n of the collision
operators Jn(f . . . f ) (n = 2,3,4, . . .) indicates the number of particles in the cluster.

Furthermore, each of the f in a cluster Jn(f . . . f ) in (4) depends on the position and the
velocity of one of the cluster particles, respectively, as well as on the time.

Finally the Jn(f . . . f ) in (4) are integrals over infinite space over the positions and ve-
locities of all (n − 1) particles in the cluster, except over particle 1, and posses the cluster
property i.e., each particle in a cluster must have at least one collision with another cluster
particle (including particle 1); if not, their contributions to Jn vanish (cf. Fig. 1(b)).

Comparing the equilibrium virial expansion (2) with the expansion (4), one sees that
the right-hand sides of these two expansions exhibit a certain formal correspondence in
structure and that the role of the equilibrium density n is, in non-equilibrium, taken over by
the non-equilibrium single particle distribution function f (r,v, t). “Collide” means in (4) a
real dynamical collision, not just a (static) interaction of particles as e.g. in (3).

It should be emphasized again that the structure of the Jn is similar to that of the cor-
responding virial coefficients in equilibrium involving n interacting particles, in that they
have both the cluster property, i.e. they vanish unless all n particles interact or collide at
least once with another particle in the cluster. Therefore the term Jn contains only extra
contributions to ∂f

∂t
from n colliding particles, which were not contained in the previous Jm

with m < n.
I will restrict myself here to a brief discussion of Bogolubov’s work [8, 9]. Bogolubov

actually arrived at an equation of a much more complicated form than (4). He obtained his
generalized Boltzmann Equation as a special solution of the basic Liouville equation for
the N -particle system in the 6N dimensional phase space � = {r1,v2, . . . , rN,vN } of the
entire N -particle system. By integrating the Liouville Equation successively over the phases
r,v of an increasing number of particles, leads then to a hierarchy of coupled equations
for all the distribution functions, which depend on 1,2,3, . . . particles, respectively, while
taking also the limits N,V → ∞ with N/V = n. For details I refer to the literature [7].
This hierarchy was called by Uhlenbeck, the B-B-G-K-Y-hierarchy, named alphabetically,
but not chronologically, after a number of (but not all) authors, who derived this hierarchy
independently from the Liouville Equation: Bogolubov, Born and Green, Kirkwood and
Yvon, where the latter was also the first [8–12].

In order then to obtain a single closed equation for f (r,v, t), Bogolubov assumed that,
after a characteristic time of the order of the duration of a collision, all higher order dis-
tribution functions of the gas in this hierarchy of coupled equations would, as far as their
time evolution was concerned and depend only on that of the first (Boltzmann’s) distribution
function f (r,v, t).

One should emphasize, that Bogolubov’s original generalized Boltzmann equation was
recursive, in that the n-particle collision term he obtained, was expressed as a sum of m ≤ n

particle collision contributions. It did not have therefore the obvious, virial-like, structure
as (4) [13]. Later the much simpler formal virial-like expansion of (4) was derived [14].4

4In fact, non-equilibrium cluster expansions can be constructed formally [14] similar to those employed in
equilibrium statistical mechanics to obtain density expansions of distribution functions or thermodynamic
properties. Using those, the recursive Bogolubov expressions for the collision operators can be rewritten in
a much more transparent form like (4), as a sum of diagrams for each particle cluster, which is identical
to those appearing in the corresponding equilibrium virial coefficients for the thermodynamic properties,
when expressed in terms of linear (Husimi) graphs [15]. In these graphs then, the vertices represent instead
of the equilibrium density n, the Boltzmann distribution functions f (r,v, t) of the various particles in the
cluster, while the lines connecting the vertices represent instead of equilibrium (static) Boltzmann factors,
non-equilibrium (dynamical) streaming operators [7]. It is this simplified form of the generalized Boltzmann



882 E.G.D. Cohen

Fig. 1 (a) genuine two, three and four particle collisions, where all particles overlap; (b) extended three
and four particle collisions. Overlapping circles represent particles at collision, interacting with a finite range
interparticle potential. The velocities of the particles are indicated by arrows

In addition, the generalized Boltzmann Equation (4) is purely formal and it was tacitly
assumed that this equation made physical sense. In fact, as will be shown in Sect. 4, it did
not. To see this, a much more detailed analysis of the Jn with n > 2 in terms of the type of
collisions between the n-particles in each Jn was needed first, than the formal manipulations
used so far. I will restrict myself here to a very simplified presentation of what is involved
here.

In Fig. 1, a binary and two different types of three and four particle collisions, are
sketched for interparticle potentials with a finite range.

Except for binary collisions, for collisions between more than 2 particles there are a num-
ber of different classes of contributing collisions to the Jn of (4). The first class, illustrated in
Fig. 1(a), is analogous to the “collisions” occurring in the equilibrium virial expansion: it is
a “genuine” three or four etc. particle collision, where each cluster particle interacts “simul-
taneously” with all other particles in the cluster. However, as is illustrated in Fig. 1(b) for J3

and J4, there is another class of collisions, where two particles 1 and 2, say, collide, separate,
but then after a finite time a third particle 3, collides with one of the original two particles, 2,
causing a re-collision of the original pair 1, 2. The structure of the J3-term is such that this
type of (re) collision also makes a non-vanishing contribution to J3 and similarly for J4.5

A sketch of some such collisions between three and four particles, contributing to J3 and
J4, respectively, is given in Fig. 1(b). The corresponding J3-, J4- etc. operators involve then
integrals over all possible positions and velocities of the 3,4, etc. particles, respectively,
(except of particle 1) in their combined phase space.

Equation, exhibited formally in (4) which is amenable to treatment. It could, in principle, be used to obtain
the short time behavior of the distribution function f (r,v, t) for times t/tmfp = O(1) of a moderately dense
gas, where tmfp is the duration of a mean free path.
5There are in addition, other types of collisions, which contribute to the Jn, e.g. collision sequences which
prevent recollisions to take place between two particles, due to the “unfortunate” interception of one of the
two particles by another particle in an “unfortunate deflecting” collision, so that the recollision never takes
place. For more details, see [16].
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Therefore the Bogolubov expansion has the same property as the equilibrium virial ex-
pansion, in that a property of the entire N -particle system, ∂f

∂t
, is expressed in terms of the

dynamical (collision) properties of isolated groups of 2,3, -particles in infinite space thus
reducing the many particle dynamical problem to a sequence of dynamical problems of in-
creasing numbers (2,3,4, . . .) of particles. The three particle collision term J3(fff ) was
first obtained by Bogolubov, almost 75 years after the two particle collision term J2(ff ) of
Boltzmann.

3 Expected Virial Expansion of Transport Coefficients

With the generalized Boltzmann equation of Bogolubov in the form (4) it appeared that
a virial expansion of the transport coefficient had in principle been obtained. All that was
further needed, was to go from a mesoscopic description of the gas in terms of f (r,v, t)

in (r,v) space to a macroscopic description of the gas in terms of the first five velocity
moments of f , the five hydrodynamical quantities:

the local density n(r, t) =
∫

dvf (r,v, t), (5)

the local velocity u(r, t) =
∫

dvvf (r,v, t), (6)

the local temperature
3

2
n(r, t)T (r, t) =

∫
dv

1

2
mV 2(r, t)f (r,v, t). (7)

Here the so-called peculiar velocity V (r, t) = v −u(r, t), is the velocity of a particle v with
respect to the average local velocity at r,u(r, t), which is relevant for the proper definition
of the transport coefficients.

This transition from (r,v) space to r-space and then to hydrodynamics was accomplished
much earlier for the Boltzmann Equation, independently by Chapman and Enskog (1916,
1917), using different but equivalent methods [17]. The same Chapman-Enskog procedure
can be used to obtain a solution of the generalized Boltzmann Equation (4) and leads then
to the five hydrodynamical equations for n(r, t),u(r, t) and T (r, t).

The basic assumption here is similar to that made by Bogolubov to obtain the generalized
Boltzmann Equation, in that after a characteristic time much larger than the mean free time
tmfp between two successive collisions of a gas particle, f (r,v, t) would only depend on t

via n(r, t),u(r, t), T (r, t), the five hydrodynamical variables.
The Chapman-Enskog solution of the Boltzmann Equation (1), or of the generalized

Boltzmann Equation (4), is obtained by considering a special solution of this equation. It
is assumed then, that the space and time dependence of f (r,v, t) after a time t � tmfp,
(cf. (4)), is only via the first five (hydrodynamic) moments of f , so that with: f (r,v, t) =
f (r,v | n(r, t),u(r, t), T (r, t)) and one has:

∂f

∂t
= ∂f

∂n
.
∂n

∂t
+ ∂f

∂u
.
∂u

∂t
+ ∂f

∂T
.
∂T

∂t
, (8)

where in the last equation the arguments r,v, t have been dropped. If one then makes an
expansion in the spatial gradients of n,u, T , i.e. in ∂n

∂r
, ∂u

∂r
, ∂T

∂r
, then to lowest order in these

gradients, the Euler equations, while to first order in the gradients, the Navier-Stokes equa-
tions of hydrodynamics are found, respectively, [13]. Suffice it here to say that the latter
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express the time derivatives of n(r, t),u(r, t) and T (r, t) in terms of their first order spatial
derivatives or gradients.

There are only two basic ingredients in the hydrodynamic equations for the five hydrody-
namical quantities (5)–(7). (1) The five conservation laws of mass, momentum and energy
and (2) A linear assumption of the relation between the momentum or the heat currents
(flows) and their corresponding gradients. In particular, the xy-component Pxy of the pres-
sure tensor (i.e. the flow of x-momentum in the y-direction in a shearing fluid), is then given
by

Pxy = −η
∂ux

∂y
, (9)

while the heat flow vector J is given by

J = −λ
∂T

∂r
. (10)

Here the coefficients of proportionality between the currents and the gradients are the trans-
port coefficients: the shear viscosity η, and the thermal or heat conductivity λ, respectively.
The r, t dependences of η and λ via n(r, t) and T (r, t) are here, and from now on, sup-
pressed.

The Chapman-Enskog solution of the generalized Boltzmann Equation leads then to a
formal density expansion of the transport coefficients, in particular for the shear viscosity,
of the form:

η(n,T ) = η0(T ) + η1(T )n∗ + η2(T )n∗2 + · · · , (11)

where a dimensionless density n∗, has been used which e.g. for hard balls of diameter σ in
d dimensions equals nσd .

The first term η0(T ) on the rhs of (11) is the Chapman-Enskog result for the Boltzmann
Equation (1). An explicit expressions for η0(T ) in terms of the interparticle forces (cf foot-
note 2), which determine the dynamics of the binary collisions contained in the Boltzmann
Equation, were obtained by Chapman and Enskog in 1917, which agrees for a realistic (e.g.
Lennard-Jones-like potential (see footnote 2)) very well with experiment. Choh and Uhlen-
beck were the first to obtain a formal expression, based on the formal term J3(fff ), for
η1(T ) in 1957, forty years later than Chapman and Enskog did for η0(T ) based on J2(ff ).
For hard spheres η1(T ) agrees well with computer simulations for moderate gas densities
[18, Fig. 1]. η2(T ) contains the contributions of four particle collisions in J4(ffff ) in (4)
etc.

Comparing the expansion in (11) for the non-equilibrium transport coefficient η in pow-
ers of n∗ with the expansion in (2) for the equilibrium thermodynamics quantity p in powers
of n, one sees that they are formally identical.

4 Divergences in the Non-equilibrium Virial Expansion

For about ten years after the Brussels meeting, the various approaches to a derivation of
a generalized Boltzmann Equation converged to the result of Bogolubov and the formal
expression obtained by Choh and Uhlenbeck for the three particle correction of the viscosity,
η1(T ) stood as an explicit, though formal, expression for a transport coefficient in a gas
beyond the dilute gas regime. However, when attempts were made to evaluate explicitly
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Fig. 2 An extended sequence of 3 collisions between three identical hard disks 1, 2 and 3, contributing to
J3(fff ): (12) (23) (12) (cf Fig. 1(b)). Without the intermediate (23) collisions, there would be no contribu-
tion to J3(fff ). In d = 2 the necessary (12) recollision for a contribution to J3(fff ) can only take place
if particle 3 directs, after its collision with 2, particle 2 to collide with (far away) particle 1, thus creating a
recollision between particles 1 and 2. The (1, 2) recollision can only occur if particle 3 directs particle 2 to
hit the line AB, which will require a target scattering angle θ ∼ σ/�21, where �21 is the distance between
the (2, 3) and the (1, 2) recollision. Since the motion of the 3 particles is in the infinite plane the contribu-
tion to J3(fff ) of these type of collisions will be ∼ ∫ ∞

... (σ/�21)d�21. Although the integral decreases with
increasing �21, it does not decrease fast enough, so that a logarithmic divergent contribution results in d = 2.
However, in d = 3, where an extra dimension perpendicular to the plane of the figure exists, the decrease for
a recollision will be ∼ (σ/�21)2, which leads then to a finite contribution to J3(fff )

the Choh-Uhlenbeck expression for e.g. a simple but concrete particle model, unexpected
difficulties occurred.

In fact, in 1965, J. Weinstock [19], R. Goldman and E.A. Frieman [20] and J.R. Dorfman
and E.G.D. Cohen [21, 22] found independently that divergences of the non-equilibrium
virial coefficients occurred. In particular, for a two dimensional system of a gas of hard disks,
η1(T ) was found to diverge logarithmically, due to the unboundedness of the occurrence of
extended three particle collisions, as sketched in Fig. 2 and is discussed in its caption. As the
same figure indicates, for hard spheres there is convergence “by the skin of one’s teeth”, so
that η1(T ) then exists and consequently also three dimensional hydrodynamics with η0(T )+
η1(T )n∗ as viscosity, could be used for a gas of sufficiently low density. In fact, using the
above mentioned simplified expressions instead of the original Bogolubov expressions for
the J n and consequently also for the corresponding transport coefficient virial coefficients
ηn−2, one can argue that the divergences decrease with increasing dimension, but are present
for all J n and ηn−2 for n ≥ 4.

5 Origin of the Divergences and Its Consequences

The physical reason that extended collisions in a non-equilibrium gas diverge is that they
are collisions between a number of particles inside an isolated (from all other particles
in the gas) cluster of particles in infinite space. It was the “miracle” of the corresponding
virial coefficients in equilibrium, that, although they also involved integrals over infinite
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space, actually they only extended over distances of the order of the (short) range of the
interparticle forces. This occurred because the entire problem was static in the sense that
it did not contain the time and therefore no dynamics and only “instantaneous” interaction
or overlap contributions of particles were needed. To the contrary, collisions contributing
to the (non-equilibrium) transport coefficients, do involve the time and the dynamics of the
particles.

Although for the “genuine” n-particle collisions, when all particles collide simultane-
ously and therefore only have, a local, spatially restricted, time dependence, no divergent
contributions to the transport coefficients can occur also in nonequilibrium, for the extended
collisions they do, since unlimited infinitely long free paths are possible then between suc-
cessive collisions (cf Fig. 1(b) and Fig. 2).

However, for any gas of finite density, on the average, no free path can exceed the mean
free path very much. In fact, the mean free path is a many particle (collective) property of the
entire (N -particle) gas and involves collisions not only between the particles inside conve-
niently constructed isolated clusters consisting of a “small” number of particles, but between
all N gas particles. The mean free path is therefore a “many particle” not an “individual par-
ticle” effect. Thus for the transport—and presumably all other—physical properties of a
non-equilibrium gas no reduction of the many (N -) particle gas to those of only (small)
isolated groups of particles, can be made.

A consequence of the necessity of considering the mean free path as a cut-off of the
free path between extended collisions is, that it implies, in the case of the two dimensional
hard disk gas, that factors logarithmic in the density will appear. This, because in a real gas
log t (cf Fig. 2) could not much exceed log tmtp and, since tmfp is inversely proportional to
the density of the gas: tmfp ∼ 1/nσ d , this leads to a term ∼ logn∗, logarithmic in the gas
density.

Thus one would expect density expansions of the transport coefficients, illustrated here
for the viscosity of the form:

d = 2 η(n,T ) = η0(T ) + η′
1(T )n∗ logn∗ + η′′

1(T )n∗ + · · · , (12)

d = 3 η(n,T ) = η0(T ) + η1(T )n∗ + η′
2(T )n∗ logn∗ + η′′

2(T )n∗2 + · · · , (13)

of these expansion coefficients, η′
1, η

′′
1 and η′

2 have been computed analytically for a gas
of hard disks (d = 2) and a gas of hard spheres (d = 3) explicitly to a high degree of ap-
proximation, between 1966 and 1983 by J.V. Sengers et al. [23–25] , respectively. The ex-
pansion (12) shows that the number of three particles collisions is—because of the “inner
structure” of the extended collisions (cf Fig. 1(b))—not ∼n∗2 but ∼n∗2 log n∗. Despite vig-
orous attempts, no convincing experimental confirmation of a term ∼ n∗ log n∗ in η(n,T )

for d = 3 has been achieved as yet [18].

6 Maximum Number of Collisions

The extended collisions also suggest a purely dynamical question, which in its simplest
form reads: “What is the maximum number of collisions between 3 identical hard balls in d

dimensions?”
At the same time of the belief in a generalized Boltzmann Equation and of a virial ex-

pansion of the transport coefficients, there was also a strong opinion, represented, amongst
others, by Wigner and Uhlenbeck that the maximum number of the above mentioned col-
lisions had to be 3. Their argument was simple (cf Fig. 3): in d = 1, on a line, two hard
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Fig. 3 Collisions between 3 hard rods: 1, 2, 3 (red) in d = 1, with velocities v1,v2 and v3, respectively,
indicated by black arrows. A maximum of 3 collisions can occur, before the particles move away from each
other, never to collide again

Fig. 4 Example of four collisions between 3 hard disks 1, 2 and 3 in d = 2. At and between the first three
collisions (12), (23), and (12), particle 2 is always to the left of particles 1 and 3. This makes a fourth collision
(1, 3) to the right of particles 1 and 3 possible i.e. a sequence of 4 collisions (12) (23) (12) (13). The distance
between the first three almost simultaneous collisions (12) (23) (12) and the last, the fourth, (13) collision,
is of the order of 5.5 particle diameters in this case. After these four collisions the 3 particles move away
from each other, never to collide again. The sketched four collision sequence and its time reverse, (13) (12)
(23) (12), are the only possible four collision sequences between 3 hard disks in d = 2. Note that in d = 1 (cf
Fig. 3), particle 2 has no other choice than to be just between particles 1 and 3, so that no fourth collision,
between 1 and 3, can occur

rods (particles), once directed towards a collision, cannot “escape” each other, i.e. they must
collide and one easily proves that the maximum number is 3.6 Therefore, a fortiori, in d > 1,
where there is much more space for motion available and collisions are much more difficult
to “arrange”, the maximum number cannot be > 3.

There is, however, in principle, a possible counter argument, that in a space of dimension
d > 1, more and other kinds of collisions could be possible than in d = 1. In fact, it was
first found by J.D. Foch in 1964 numerically that indeed 3 hard disks in d = 2 could suffer 4
rather than 3 collisions. Soon afterwards, T.J. Murphy in 1965 provided an analytical proof
that the maximum number of collisions of 3 identical hard balls in any dimension d > 1
was 4. For details I refer to the literature [26, 27]. This is illustrated in Fig. 4, for hard

6The simplest proof is perhaps using an x, t diagram, where, ignoring the finite size of the rods, the theorem
follows immediately from the fact that three straight lines can intersect in the plane only a maximum of three
times. This is based on the dynamics of hard rods in one dimension, where the laws of momentum and energy
conservation for two colliding hard rods lead to an exchange of the velocities of the two colliding particles,
so that one particle continues after a collision with the velocity of the other particle before the collision.
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disks in d = 2 where a sequence of 4 successive collisions is (12) (23) (12) (13) occurs.
One should notice that at and between the first 3 collisions (12) (23) (12), particle 2 is
always to the left of the particles 1 and 3. Therefore, in d = 2, contrary to in d = 1—where
particle 2 is necessarily always between the particles 1 and 2 (cf Fig. 3)—particle 2 can now
“escape” from between 1 and 3, because of the extra dimension, thus making an “extra” (13)
collision possible. The above mentioned sequence and its time reversed are the only possible
sequences of 4 collisions between 3 hard balls in any dimension d > 1.

7 Epilogue

There is, in my opinion, a moral in the examples discussed in this paper of “obvious” general
physical results, which were both incorrect, in spite of the fact that they were nourished by
many, including outstanding, physicists. I want to end therefore with three recommendations
for the younger generation of physicists:

1. Be cautious with “common, fashionable beliefs and opinions”!
2. Test formal developments and intuitive arguments on concrete models!
3. The latter was, in my opinion, beautifully expressed by Oswald Avery of the Rockefeller

University, the discoverer of DNA as the seat of genetic information in 1944, when he
told his students: “To do research, you must blow bubbles, but, you have to prick them
yourself”!
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